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Abstract Using the harmonic approximation as a model to describe a bilayer of a Wigner 
crystal in wide quantum wells, we calculate the ground state properdes and the phonon s p e c "  
of this system as a function of the density and layer separation. A fitting formula is given for 
the ground stare. energy. 

1. Introduction 

Many properties of a bilayer of an electron liquid in a magnetic field and a wide quantum 
well have been discussed over the past few years [l]. However, the properties of the solid 
phase remain to be investigated. Several properties of one layer of a Wigner solid (with 
and without a magnetic field) such as the phonon specmm and zero-point energy in the 
harmonic approximation [2, 31, anharmonic corrections to the phonons [4, 51 and shear 
modulus 1671 have already been calculated in the past by Esfarjani among others. Mean- 
field methods such as the time-dependent HarIree-Fock theory [SI and quantum Monte 
Carlo simulations [9, 101 have also been used to describe this system. Therefore there is a 
rather good understanding of the properties of the solid phase, and the validity and limits 
of different theories. In a first attempt, we use the simplest model to describe this system. 
The well is represented by a quadratic potential along the z direction and the Hamiltonian 
is replaced by a harmonic one, so that it can be exactly diagonalized. Higher anharmonic 
corrections, as well as the exchange are neglected; however, this theory includes elecfxon 
correlations and the motion of electrons perpendicular to the layers (the wavefunction has 
a finite z extent), and is therefore three dimensional, and better than the mean-field type of 
approach. 

The bilayer system is present in wide quantum wells or heterostructures in which 
there could be a barrier separating two wells. It must be emphasized that the background 
positive charge coming from the donor impurities and the metallic gates parallel to the two- 
dimensional plane must be present on both sides of the well, otherwise it is electrostatically 
impossible to have two separate electron layers with a positive plate of opposite charge on 
only one side of them. In this case, the two layers are formed because of the Coulomb 
repulsion between the electrons, each layer screening its neighbouring positive plate. In 
what follows, we assume two plates of the same charge, so that the two electron layers 
have the same density. We have omitted from our energy terms a constant term coming 
from the gate interaction equal to Zxb/ac, b being the distance between the two gates, and 
ac the electron density (this is the well known electrostatic energy of a capacitor). 

In this paper, we describe our simple harmonic model representing the solid phase of 
the bilayer in the quantum well, and present the results of our calculations of the phonon 
spectrum and total energy of this system. 
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2. Harmonic model 

The well perpendicular to the plane is modelled by a parabolic potential V ( z )  = K z 2 / 2 .  
We furthermore expand the potential energy in powers of the displacements around the 
equilibrium lattice positions, and keep only up to second-order terms. This is called the 
harmonic approximation. The resulting Hamiltonian can be reduced to a harmonic oscillator 
Hamiltonian which can be exactly diagonalized. The resulting eigenvalues are then the 
phonon energies representing the excitations of the ground state, and one half of their sum 
is the zero-point energy correction to the classical Coulomb term. 

So if we denote the equilibrium lattice positions by Ri, and the displacements about 
them by the three-dimensional vector ti, the Hamiltonian in atomic units (Tz = e = m = 1) 
becomes 
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where the index U labels the layer, and takes the two values +1 or -1, and Au,,t is zero if 
U = U' and equal to d? + A otherwise. d is the interlayer distance, and A is the relative 
shift of one layer with respect to the other. In the above and what follows, the ' on the sum 
indicates that the terms i = j and U = 0' must be excluded from the sum. 

The above Hamiltonian contains two terms, the classical energy (obtained for f j  = 0 
and Pi = 0) and the harmonic Hamiltonian H b :  

Hence, we have a two-dimensional lattice with two electrons per unit cell, each in one layer 
and having three degrees of freedom. This will lead, as we will see, to a 6 x 6 dynamical 
matrix. 

The lattice being invariant under finite translations, we go to the normal modes to 
separate the Hamiltonian into independent parts. The normal modes are defined by 

where N is the number of particles in one layer. After substitution in equation ( Z ) ,  we get 
Hhar = xk Hk, where 

In the above, D is the dynamical matrix given by 



Wigner crystal bilayer in harmonic approximation 7219 

For the sake of brevity, the subscripts (Y and p were dropped from the V signs. Notice 
that the x and y components in the diagonal part of D contain the dynamical matrix of the 
2D Wigner crystal [2] confined to move in the plane (second term of the first bracket). 

As can be seen from equation (4), the calculation of the dynamical matrix involves 
two-dimensional sums of the type w(k, A , d )  = CieE"VVIRi + A + d2l-l; likewise, 
the calculation of the classical energy involves e(A, d )  = xi IRi + A + d2I-l . To make 
them rapidly convergent, the above terms were calculated by the means of the Ewald sum 
technique which involves two sums: one sum is the short-range part of the expression and is 
done in real space, and the other includes the long-range and smooth part ofthe expression, 
and is done in reciprocal space. 

The eigenvalues of D are the squares of the phonon frequencies. For large K, one can 
identify the highest two modes as being electrons vibrating perpendicular to the plane. 

To calculate the dynamical matrix, one must first determine the interlayer distance d, 
and the basis vectors Ri, which characterize the lattice type, as well as A, the displacement 
of one layer with respect to the other. This is done by minGzing the total classical energy 
with respect to d, Ri and A. The classical energy per particle comes from equation (1) in 
Which Pi = 0 and & = 0, 

1 1 ( 1  
_ = -  + - - -positive background term + 
2N 2 'E IR, + A + d ? l  2 lRil 

This minimization is done numerically with a standard minimization routine [ 1 I]. To 
find the absolute minimum, we started from four different initial configurations in which 
the system has no symmetry, but is close~to respectively a square, rectangle, triangle and 
rhombohedron with obtuse angle. The shift A was also taken randomly. We found that the 
distance d is generally the same, regardless of the found minimum, and that it scales as 
&f(&), where ac is the area of the unit cell, 20 = ~( - ' /3 )ac ( - ' / 2 )  is a dimensionless 
parameter characterizing the well width along the ? direction and f a universal function 
independent of ac. This function is displayed in figure 1, and can be approximated by a 
straight line for wide enough wells (20 > 0.32), although its asymptotic form is 4~2:. It 
was also found that the shift of one layer with respect to the other, characterized by A, 
is such that one lattice sits at the centre of the other. Due to the flatness of the interlayer 
potential for large distances d, the convergence to the exact centre was accurate to within 
a few per cent, however. 

We also show in figure 2 the plot of the classical energy times ,hE as a function 
of x = d/&. One can notice that it is a smooth and continuous function even at the 
monolayer-bilayer transition, even though d'is discontinuous. One can continue this analysis 
further by computing the classical energy of the trilayer. There would be more degrees of 
freedom: the structure of the middle layer as well as its density could be different from the 
outer layers. One can thus find the region over which the bilayer is stable with respect to the 
interlayer Coulomb interaction. Clearly, for narrow wells the binding energy of one layer 
is larger than the effect of interlayer repulsion, and for very wide wells (d ,> 6) one 
expects to get more than two layers. We have done the calculation of the energy of three 
layers of the same density, and we found, that its energy becomes lower than the~bilayer for 
x 1.2. 

In this analysis, the Bohr radius a~ (=Elm* in atomic units) is irrelevant, and all the 
results are functions of only one dimensionless parameter Z, or equivalently x = d/&. 
as, measuring the length scale where the kinetic energy would be equal to the potential 
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energy, becomes important when one includes the kinetic energy. Therefore for the 
discussion of the total energy (classical + zero point) the system would be characterized by 
two dimensionless parameters formed from the combination of d,  f i  and a ~ .  

Confining ourselves to the calculation of the classical energy of the solid bilayer (i.e. 
with a periodic structure of two electrons per unit cell), we find that for narrow wells 
(ZO < 0.32) the monolayer with the hiangular smcture has lowest energy; this can also 
be viewed as a centred rectangular structure with aspect ratio 4. As ZO is increased, 
(i.e. the well gets wider) the interlayer distance d jumps suddenly to a non-zero value of 
0.27& and the shuchue becomes a centred square until ZO reaches 0.37 (corresponding 
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to d = 0.61&. Then the 90 degrees angle of the square decreases continuously to 60 at 
20 = 0.39 where d = 0 . 7 5 6 .  This represents two triangular structures in each layer, and 
is the limit of weakly interacting layers. For wider wells, this sfmcture remains unchanged 
until a transition to three layers occurs. 

The classical energy per particle can be shown from equation (5) to have the following 
general form: 

&lass 1 1 - = - eMddung/ f i  - Jrdlac + zK(d12)’ + eEa 2N 2 

where -2rrdlac is the interaction with the other layer in the large-d limit (this can be 
trivially deduced from Gauss’s law). We will therefore use the following fitting formula for 
the classical energy of the bilayer. The classical energy per particle can be fitted with the 
one of the two following formulas: 

or 

In the above x = d / G ,  and the numerical values of the fitting parameters can be found 
in table 1 .  For a triangular shucture, eo would be -3.92112, half of the Madelung energy 
of this type of lattice, but since the square lattice is also stable for lower x ,  we use fitting 
constants eo and e,. Although both fits yield similar errors, we prefer the first form because 
it has the right ‘asymptdtic’ behaviour and is more valid outside the range x > 1.2. 

Table 1. Fining coefficients of the classical and the zero-point eneraes 

Classical enem Zero-wint enerm 

@ -2.83785 CO -1.9749 5.73024 
ai 0.719671 cl -15606 b; -3.45517 

.nz -1.98508 cz -0.55193 h 1.69187 
as 0.568521 1 5.2838 h -0.290987 

3. Zero-point energy and mean lattice vibrations 

Once the minimum-energy configuration is found with respect to the layer separation and 
shift as well as lattice structure, we proceed to diagonalize the dynamical matrix which 
is now assured to be positive definite. In contrast to the classical energy, the zero-point 
energy ( D E )  is not a continuous function of 20. However, it is found that regardless of 
the density, the ZPE is a universal function of Z, divided by ( a ~ ) ~ / ~ .  For d = 0 this is 
a well known property of the 2D Wigner solid. We find here that, for the bilayer case as 
well, this scaling holds since x = d/+ is also a unique function of 20. In this regime, 
where the structure goes from square at lower 20 to triangular at higher 20. the ZPE per 
particle can be simply fitted with the following formula (see figure 3 and table 1 for bj): 
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Figure 3. Zero-point energy times (ac)3/4 versus layer separation x .  The fit is not shown on 
this figure. 

Phonons of the bilayer WC-TRIANGULAR lattice (1337) 
I I 

G X K G 
Fire 4. Typical phonon dispersion relation for the biangular latrice at 20 = 0.407 and 
x = 0.84. The frequency is in units of ( a ~ ) - ~ / ~ .  

where A. = 1.6 corresponds to the eigenmodes of the dynamical matrix. 
Two typical phonon dispersion relations for the square and the triangular lattice are 

displayed in figures 4 and 5 at r, = -/as = 37 (this corresponds to the melting 
density of the monolayer Wigner lattice [9]). For small enough well widths, one can 
identify the two higher branches as the modes of vibration perpendicular to the planes, i.e. 
along the z direction. The four lower branches are splittings of the monolayer transverse and 
longimdinal bands, the lowest one being a shear mode, and the highest one (fourth band) a 
plasmon-like mode (proportional to 4 at small k). In both of these modes where o ( k )  + 0 
for k + 0, the electrons of each layer vibrate in phase. The two remaining branches (the 
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Phonons of the bilayer WC-SQUARE lattice - r s 3 7  ; ZeO.34 

Figure 5. Ty@d phonon dispersion relation for the square lattice at 2,) = 0.346 and r, = 37. 
The frequency is in units of ( ~ c ) - ~ I ~ .  

second and third) have a gap at the r point; they correspond to ‘optical’ modes i.e. the 
two electrons of each layer vibrate in the x-y plane in opposite directioris; the value of the 
gap representing the strength of interlayer correlations scales l i e  the phonon frequencies, 
as (uc)-~/~, and is almost an exponentially decreasing function of x or d .  Figure 6 shows 
the variation of the non-zero modes with respect to Z,. Two of these modes correspond to 
motions in the z direction, and the two others, which are doubly degenerate in the square 
and triangular structures, represent the ‘optical’ modes. In the monolayer c s e  (ZO < 0.321, 
these two modes are of course independent of Zo, and one can see that one of the modes 
along z goes to zero at the transition point. One can notice the discontinuities corresponding 
to structural phase transitions, which are specific to the solid phase! 

To get an idea about the stability of the lattice, we calculated the mean lattice vibrations 
(MLV) as well. This quantity is defined as MLV = m, where 

and no is the number of layers or more generally the number of species per unit cell. 
If we take MLV = 0.3 as a criterion for the stability of the solid phase [13], we can 

deduce a phase boundary separating the solid from the liquid phase. Figure 7 shows the 
phase boundary obtained in the d / f i c - r s  plane (ac = zr:a”,. This boundary is however 
obtained for the model adopted above, namely a bilayer in a parabolic well. But it can 
certainly indicate qualitatively in what region the melting transition takes place. Note that 
for large values of d / f i  this ceases to be valid because the bilayer becomes unstable 
towards the formation of three layers. 

We can also study different components of MLV as a function of ZO and ac. For 
example the displacements in the 2 direction are given by (c:) = (l/ZiVno) ck.i=5.6 l/ow. 
or the displacements in the X-Y plane are (ti) = (1/2Nno) Cx.k,.4 l / q ~ .  We show 

in figure 8 the three quantities /&?, and d m  versus x = d/& 

for r, (one layer) = 37 . Because the phonon frequencies scale as (uc)-~”, one can also 



7224 

1.8 
1.7 - 
1.6 . 
1.5 - 
1.4 - u- 
12 - 
l.1- 
1.0 . 
0.9 - 
0.8 . 
0.7 - 
0.6 - 
0.5 - 
0.4 . 
0 3  - 
0.2 - 
0.1 - 

0 .  

K Esfarjani and Y Kawazoe 

. 4 non-zero modes at k=O 

i 
f 

- -_ - - - - 
- 

............ 
.-._ 

Legend 
5mode - "Optical" mode 

........... 

................ .... ::::,, ....... 
....................... 

0 ' .  
0.26 0.28 0.30 0.32 0.3 0.36 0.38 0.40 0.42 0.44 0.46 0.4s a 

zo  
Figure 6. Frequency of the non-zm modes times (ad3/' at the r point, as a function of 20 at 
rr = 37. For a fixed Zu. these values scale as (OC)-"~.  Solid lines are in-plane modes, doubly 
degenerate for the square and the triangular lauice. The highest mode in the dmed line is the 
one in which the huo electrons move together (in phase) perpendicular to the plane. The other 
dotted l i e  represents the out-of-plane vibrations whose phases differ by n. 

X 

rs in one plane 
Figure 7. Monolayer-bilayer phase boundary in the r,-x plane obtained from the Lindemann 
criterion (largest component of MLV less than 0.3). Note that for large x (21.2) there is another 
instability towards the formation of three layers which is not included in this figure. 

deduce a scaling relation for the mean lattice vibrations: MLV a (ac)-'I4 (for constant 
20 or x ) .  Notice that the in-plane vibration curve has two humps at x = 0.6 and 0.74. 
These correspond to the transitions from respectively square lattice to rhombohedric (aspect 
ratio unity but angle varying continuously from 90 to 60 degrees) and from rhombohedric to 
triangular structures. We find that it is an inhinsic property of the solid phase in the harmonic 
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approximation that there is some kind of instability at these layer spacings, corresponding 
to a hump in the MLV, and a discontinuity in the phonon gap at the r point. This also 
occurs at the monolayer-bilayer transition where n = 0.25. In this region, we suspect, 
given the large values of (e;) and (e:) that either the harmonic theory breaks down, or, 
more generally. that the solid phase is unstable (unless one goes to much lower densities; 
see figure 7). 

4. Conclusions 

We have developed a harmonic theory for a bilayer of a Wigner crystal. Even though the 
harmonic theory does not tell us much about the transition to a liquid (it is indeed stable 
far into the liquid phase, the MLV becoming unreasonably large however), it is a good 
description of the solid for the three following reasons. 

(i) Anhannonic corrections to the harmonic frequencies and tow energy were found to 
be small in the case of the monolayer [4. 71. The next-order corrections in a perturbation 
expansion of the total energy turn out to consist of two termS of opposite signs which 
partially cancel each other out. The cubic correction was found to be larger in magnitude 
than the quartic term. This led to lower phonon frequencies ( t y p i d y  by 10%) and a 
decrease in the total energy (typically equal to 5% or less of the ZPE) in good agreement 
with the Green function Monte Carlo results of Tanatar and Ceperley [9]. Therefore we 
expect that in the bilayer case, the above results will be conserved, and that our total energy 
would be accurate to withiin a few per cent. 

(ii) The ground state wavefunction, being the exponential of a quadratic function of the 
normal mode coordinates &, contains the correlations between the parkcles (inter- as well 
as intralayer), therefore this description would be better than any mean-field type of theory 
which cannot include correlation effects in a satisfactory way. 

(E) The neglect of the exchange in this calculation is justified forMLV less than about 
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30% [12]. In the solid phase, it is known that the MLV usually does not exceed 30% which 
can be used as a Lindemann criterion for melting of quantum systems [13]. So one can 
safely say that as long as one is in the solid phase, the exchange is negligible. 

Our results are however qualitative since the quantum well has been approximated by 
a quadratic function in order to ease the diagonalization of the Hamiltonian. 

Within this theory, the monolayer-bilayer transition was found as a function of the well 
width or the density. Due to the simple form of the Coulomb interaction, scaling relations 
were derived and a simple fitting formula was proposed for the total energy (classical + 
zero point) in the regime where the bilayer is stable. It was also deduced that for large x 
interlayer correlations become very small; the potential seen by the other layer is almost 
flat. The presence of the ‘optical’ mode at the r point (k = 0) can be considered as 
a signature of the solid phase of the bilayer, and its discontinuities at structural transition 
points (x = 0.25,0.61,0.75), although quite small, could presumably be observed in optical 
experiments. The mean square lattice displacements also become very large at these points; 
this suggests a re-entrant behaviour of the solid phase near these points. 

In this paper, we only considered the case where the two layers had the same density. 
Experimentally, by changing the gate voltages, one can chose any arbitrary density in 
each plane. Our description in this case ceases to be valid in the sense that for small 
enough layer separation where the correlation effects become important, and in the case 
where the two densities are incommensurate, one would expect generation of defects such 
as dislocations and/or discommensurations to compensate for the lattice mismatch even at 
very low densities. Therefore the system would presumably not have long-range order in 
this case. Static defects such as remote donors [14] or impurities, as well as the substrate 
lattice mismatch, are expected to produce the same kind of effect. Work in this direction is 
under way. 
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